Source code for rework_pysatl_mpest.distributions.exponential

"""Module providing exponential distribution class"""

__author__ = "Danil Totmyanin"
__copyright__ = "Copyright (c) 2025 PySATL project"
__license__ = "SPDX-License-Identifier: MIT"


import numpy as np
from numpy import float64
from scipy.stats import expon

from ..core import Parameter
from .continuous_dist import ContinuousDistribution


[docs] class Exponential(ContinuousDistribution): """Class for the two-parameter exponential distribution. Parameters ---------- loc : float Location parameter. Can be any real number. rate : float Rate parameter (lambda). Must be positive. Attributes ---------- loc : float Location parameter. rate : float Rate parameter. Methods ------- .. autosummary:: :toctree: generated/ ppf pdf lpdf log_gradients generate """ PARAM_LOC = "loc" PARAM_RATE = "rate" loc = Parameter() rate = Parameter(lambda x: x > 0, "Rate parameter must be a positive") def __init__(self, loc: float, rate: float): super().__init__() self.loc = loc self.rate = rate @property def name(self) -> str: return "Exponential" @property def params(self) -> set[str]: return {self.PARAM_LOC, self.PARAM_RATE}
[docs] def pdf(self, X): """Probability density function (PDF). The PDF for the two-parameter exponential distribution is: .. math:: f(x | \\alpha, \\beta) = \\alpha \\cdot e^{-\\alpha \\cdot (x - \\beta)} where :math:`\\alpha` is the rate parameter and :math:`\\beta` is the location parameter. The function is zero for :math:`x < \\beta`. Parameters ---------- X : ArrayLike The input data points at which to evaluate the PDF. Returns ------- NDArray[np.float64] The PDF values corresponding to each point in :attr:`X`. """ X = np.asarray(X, dtype=float64) return np.where(self.loc <= X, self.rate * np.exp(-self.rate * (X - self.loc)), 0.0)
[docs] def ppf(self, P): """Percent Point Function (PPF) or quantile function. The PPF for the two-parameter exponential distribution is: .. math:: Q(p | \\alpha, \\beta) = \\beta - \\frac{\\ln(1 - p)}{\\alpha} Parameters ---------- P : ArrayLike The probability values (between 0 and 1) at which to evaluate the PPF. Returns ------- NDArray[np.float64] The PPF values corresponding to each probability in :attr:`P`. """ P = np.asarray(P, dtype=float64) return np.where((P >= 0) & (P <= 1), self.loc - np.log(1 - P) / self.rate, np.nan)
[docs] def lpdf(self, X): """Log of the Probability Density Function (LPDF). The log-PDF for the two-parameter exponential distribution is: .. math:: \\ln f(x | \\alpha, \\beta) = \\ln(\\alpha) - \\alpha \\cdot (x - \\beta) Parameters ---------- X : ArrayLike The input data points at which to evaluate the LPDF. Returns ------- NDArray[np.float64] The log-PDF values corresponding to each point in :attr:`X`. """ X = np.asarray(X, dtype=float64) return np.where(self.loc <= X, np.log(self.rate) - self.rate * (X - self.loc), -np.inf)
def _dlog_loc(self, X): """Partial derivative of the lpdf w.r.t. the :attr:`loc` parameter. The derivative is non-zero only for `X >= loc`. .. math:: \\frac{\\partial \\ln f(x | \\alpha, \\beta)}{\\partial \\beta} = \\alpha where :math:`\\alpha` is the rate and :math:`\\beta` is the location. Parameters ---------- X : ArrayLike The input data points. Returns ------- NDArray[np.float64] The gradient of the lpdf with respect to :attr:`loc` for each point in ::attr`X`. """ X = np.asarray(X, dtype=float64) return np.where(self.loc <= X, self.rate, 0.0) def _dlog_rate(self, X): """Partial derivative of the lpdf w.r.t. the :attr:`rate` parameter. The derivative is non-zero only for `X >= loc`. .. math:: \\frac{\\partial \\ln f(x | \\alpha, \\beta)}{\\partial \\alpha} = \\frac{1}{\\alpha} - (x - \\beta) where :math:`\\alpha` is the rate and :math:`\\beta` is the location. Parameters ---------- X : ArrayLike The input data points. Returns ------- NDArray[np.float64] The gradient of the lpdf with respect to :attr:`rate` for each point in :attr:`X`. """ X = np.asarray(X, dtype=float64) return np.where(self.loc <= X, 1.0 / self.rate - (X - self.loc), 0.0)
[docs] def log_gradients(self, X): """Calculates the gradients of the log-PDF w.r.t. its parameters. The gradients are computed for the parameters that are not fixed. Parameters ---------- X : ArrayLike The input data points at which to calculate the gradients. Returns ------- NDArray[np.float64] An array where each row corresponds to a data point in :attr:`X` and each column corresponds to the gradient with respect to a specific optimizable parameter. The order of columns corresponds to the sorted order of :attr:`self.params_to_optimize`. """ X = np.asarray(X, dtype=float64) gradient_calculators = { self.PARAM_LOC: self._dlog_loc, self.PARAM_RATE: self._dlog_rate, } optimizable_params = sorted(list(self.params_to_optimize)) if not optimizable_params: return np.empty((len(X), 0)) gradients = [gradient_calculators[param](X) for param in optimizable_params] return np.stack(gradients, axis=1)
[docs] def generate(self, size: int): """Generates random samples from the distribution. Parameters ---------- size : int The number of random samples to generate. Returns ------- NDArray[np.float64] A NumPy array containing the generated samples. """ return np.asarray(expon.rvs(loc=self.loc, scale=1 / self.rate, size=size), dtype=float64)
def __repr__(self) -> str: """Returns a string representation of the object. Returns ------- str A string that can be used to recreate the object, e.g., "Exponential(loc=0.0, rate=2.0)". """ return f"{self.__class__.__name__}(loc={self.loc}, rate={self.rate})"