Source code for rework_pysatl_mpest.distributions.normal

"""Module providing normal (Gaussian) distribution class"""

__author__ = "Danil Totmyanin"
__copyright__ = "Copyright (c) 2025 PySATL project"
__license__ = "SPDX-License-Identifier: MIT"

import numpy as np
from numpy import float64
from scipy.stats import norm

from ..core import Parameter
from .continuous_dist import ContinuousDistribution


[docs] class Normal(ContinuousDistribution): """Class for the Normal (Gaussian) distribution. Parameters ---------- loc : float Mean of the distribution (mu). Can be any real number. scale : float Standard deviation of the distribution (sigma). Must be positive. Attributes ---------- loc : float Mean of the distribution. scale : float Standard deviation of the distribution. Methods ------- .. autosummary:: :toctree: generated/ ppf pdf lpdf log_gradients generate """ PARAM_LOC = "loc" PARAM_SCALE = "scale" loc = Parameter() scale = Parameter(lambda x: x > 0, "Scale parameter must be positive") def __init__(self, loc: float, scale: float): super().__init__() self.loc = loc self.scale = scale @property def name(self) -> str: return "Normal" @property def params(self) -> set[str]: return {self.PARAM_LOC, self.PARAM_SCALE}
[docs] def pdf(self, X): """Probability density function (PDF). The PDF for the Normal distribution is: .. math:: f(x | \\mu, \\sigma) = \\frac{1}{\\sigma \\sqrt{2\\pi}} \\exp\\left( -\\frac{(x - \\mu)^2}{2\\sigma^2} \\right) where :math:`\\mu` is the mean (loc) and :math:`\\sigma` is the standard deviation (scale). Parameters ---------- X : ArrayLike The input data points at which to evaluate the PDF. Returns ------- NDArray[np.float64] The PDF values corresponding to each point in :attr:`X`. """ X = np.asarray(X, dtype=float64) z = (X - self.loc) / self.scale return np.exp(-(z**2) / 2.0) / (self.scale * np.sqrt(2.0 * np.pi))
[docs] def ppf(self, P): """Percent Point Function (PPF) or quantile function. The PPF is the inverse of the Cumulative Distribution Function (CDF). This implementation relies on `scipy.stats.norm.ppf` for accuracy and robustness. Parameters ---------- P : ArrayLike The probability values (between 0 and 1) at which to evaluate the PPF. Returns ------- NDArray[np.float64] The PPF values corresponding to each probability in :attr:`P`. """ P = np.asarray(P, dtype=float64) return norm.ppf(P, loc=self.loc, scale=self.scale)
[docs] def lpdf(self, X): """Log of the Probability Density Function (LPDF). The log-PDF for the Normal distribution is: .. math:: \\ln f(x) = -\\ln(\\sigma) - \\frac{1}{2} \\ln(2\\pi) - \\frac{(x - \\mu)^2}{2\\sigma^2} Parameters ---------- X : ArrayLike The input data points at which to evaluate the LPDF. Returns ------- NDArray[np.float64] The log-PDF values corresponding to each point in :attr:`X`. """ X = np.asarray(X, dtype=float64) z = (X - self.loc) / self.scale return -np.log(self.scale) - 0.5 * np.log(2.0 * np.pi) - 0.5 * z**2
def _dlog_loc(self, X): """Partial derivative of the lpdf w.r.t. the loc parameter.""" X = np.asarray(X, dtype=float64) return (X - self.loc) / (self.scale**2) def _dlog_scale(self, X): """Partial derivative of the lpdf w.r.t. the scale parameter.""" X = np.asarray(X, dtype=float64) z_sq = ((X - self.loc) / self.scale) ** 2 return (z_sq - 1.0) / self.scale
[docs] def log_gradients(self, X): """Calculates the gradients of the log-PDF w.r.t. its parameters. Parameters ---------- X : ArrayLike The input data points at which to calculate the gradients. Returns ------- NDArray[np.float64] An array where each row corresponds to a data point in :attr:`X` and each column corresponds to the gradient with respect to a specific optimizable parameter. The order of columns corresponds to the sorted order of :attr:`self.params_to_optimize`. """ X = np.asarray(X, dtype=float64) gradient_calculators = { self.PARAM_LOC: self._dlog_loc, self.PARAM_SCALE: self._dlog_scale, } optimizable_params = sorted(list(self.params_to_optimize)) if not optimizable_params: return np.empty((len(X), 0)) gradients = [gradient_calculators[param](X) for param in optimizable_params] return np.stack(gradients, axis=1)
[docs] def generate(self, size: int): """Generates random samples from the distribution. This implementation relies on `scipy.stats.norm.rvs`. Parameters ---------- size : int The number of random samples to generate. Returns ------- NDArray[np.float64] A NumPy array containing the generated samples. """ return np.asarray(norm.rvs(loc=self.loc, scale=self.scale, size=size), dtype=float64)
def __repr__(self) -> str: """Returns a string representation of the object. Returns ------- str A string that can be used to recreate the object, e.g., "Normal(loc=0.0, scale=1.0)". """ return f"{self.__class__.__name__}(loc={self.loc}, scale={self.scale})"